
Opposite-current ¯ows in gas±liquid boundary layers Ð I.
Velocity distribution

Chr. Boyadjiev*, M. Doichinova

Bulgarian Academy of Science, Institute of Chemical Engineering, So®a 1113, Bl. 103, Bulgaria

Received 15 October 1999

Abstract

A theoretical analysis of gas±liquid counter-current ¯ow in laminar boundary layers with ¯at phase boundary

based on similarity variables method has been done. The obtained numerical results for the velocity distribution in
both phases are compared with analogous results from asymptotic theory and experimental data. The dissipation
energy in boundary layer is determined and the results corresponding to counter-current and co-current ¯ows are

compared. The comparison shows signi®cant di�erences in dissipation energy values in gaseous phase. 7 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The chemical technologies based on opposite-current

¯ows in gas±liquid systems are widely distributed in

practice. The theoretical analysis of such ¯ows [1]

demonstrates that there is a possibility to obtain

asymptotic solutions for gas±liquid systems which are

in agreement with the experimental data, obtained

from thermo-anemometrical measurements of the vel-

ocity distribution in boundary layers. The exactness of

the proposed asymptotic method [1] requires to be con-

®rmed by numerical experiments.

The experience in exact solution of the problem by

means of numerical simulation [2] shows that it is a

non-classical problem of mathematical physics which is

not su�ciently discussed in literature. A prototype of

such problem is the parabolic boundary value problem

with changing direction of time [3,4]. It was shown [2]

that this non-classical problem can be described as
consisting of several classical problems. The same
approach will be used in the present work for determi-
nation of velocity distribution in gas±liquid opposite-

current ¯ows with ¯at phase boundary.

2. Mathematical model

The mathematical description of the opposite-cur-
rent ¯ows (Fig. 1) in approximation of boundary layer
theory has the following form:
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x � 0, yr0, u1 � u11 ; x � l, yR0, u2 � ÿu12 ;

y41, 0RxRl, u1 � u11 ;

y4 ÿ1, 0RxRl, u2 � ÿu12 ;
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, v1 � v2 � 0:
�1�

The problem (1) can be presented in dimensionless

form using two di�erent coordinate systems for the
two phases, so that the ¯ow in each phase is oriented
to the longitudinal coordinate, and the following

dimensionless variables and parameters are introduced:

x � lX1 � lÿ lX2, y � d1Y1 � ÿd2Y2,

u1 � u11 U1, v1 � u11
d1
l
V1,

u2 � ÿu12 U2, v2 � ÿu12
d2
l
V2,
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��������
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s
, i � 1, 2,

y1 � u12
u11

, y2 �
�r1m1
r2m2

�1=2�u11
u12

�3=2

:
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In the new coordinate systems, the model of opposite-
current ¯ows has the following form:
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Xi � 0, Ui � 1; Yi41, Ui � 1;

Y1 � Y2 � 0, U1 � ÿy1U2, y2
@U1
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,

Vi � 0; i � 1, 2:
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3. Method of solution

The problem (3) cannot be solved directly, because

the velocities Ui �i � 1, 2� change their directions in
domains 0RXiR1, 0RYi <1, �i � 1, 2). This non-
classical problem of mathematical physics can be pre-

sented [3] as a classical one after the introduction of
the following similarity variables:

Ui � f 0i , Vi � 1

2
�����
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Zi �
Yi�����
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p :
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Substitution of Eq. (4) into Eq. (3) leads to:

2f 000i � fi f
00
i � 0,

fi�0� � 0, fi�1� � 1, i � 1, 2,

f 01�0� � ÿy1 f 02�0�, y2

�������
X2

X1

r
f 001 �0� � f 002 �0�,

X1 � X2 � 1:

�5�

It is obvious from Eq. (5) that the problem (3) has no

solution in similarity variables. However, the problem
(5) can be solved after the introduction of new par-
ameter �y2 for each X1 2 �0, 1�:

Nomenclature

u velocity in x direction (m/s)
v velocity y direction (m/s)
x coordinate (m)

y coordinate (m)

Greek symbols

m dynamic viscosity (N/m s deg)
r density (kg/m3)

u kinematic viscosity (m2/s)

Subscripts

1 for gas
2 for liquid

Superscript
� for co-current ¯ow

Fig. 1. Counter-current ¯ow.
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i.e. the problem has local similarity solution. In this
way, the problem (5) is substituted by several separate

problems for each X1 2 �0, 1�:
The solutions of these separate problems can be

obtained after the introduction of the function F:

F�a, b� �
�7
6

ÿ
f 01 ÿ 1

�2
dZ1 �

�7
6

ÿ
f 02 ÿ 1

�2
dZ2,

a � f 01�0�, b � f 001 �0�: �7�

The solution of Eq. (5) for each X1 2 �0, 1� is obtained
after ®nding the minimum of the function F�a, b�,
where at each step of minimization procedure the

boundary problem has to be solved:

2f 000i � fi f
00
i � 0, fi�0� � 0, i � 1, 2,

f 01�0� � a, f 02�0� � ÿ
a

y1
, f 001 �0� � b,

f 002 �0� � �y2b:
�8�

Table 1

Numerical results of the boundary conditions

y1 � 0:1, y2 � 0:152

x 1
�y2 a b f 01�6� f 02�6�

1.00 0.00000 0.099895 0.3265000 0.998970 0.998950

0.95 0.03487 ÿ0.097863 0.3268130 0.998971 0.998970

0.90 0.05067 ÿ0.096930 0.3269220 0.998973 0.998950

0.85 0.06385 ÿ0.096150 0.3270100 0.998971 0.998977

0.833 0.06806 ÿ0.095900 0.3270400 0.998974 0.998980

0.80 0.07600 ÿ0.095410 0.3271000 0.998982 0.998830

0.75 0.08776 ÿ0.094718 0.3271720 0.998972 0.998960

0.70 0.09951 ÿ0.094000 0.3272520 0.998970 0.998860

0.65 0.11153 ÿ0.093282 0.3273320 0.998974 0.998975

0.60 0.12410 ÿ0.092510 0.3274150 0.998970 0.998910

0.55 0.13748 ÿ0.091690 0.3275050 0.998973 0.998929

0.50 0.15200 ÿ0.090800 0.3275980 0.998970 0.998984

0.45 0.16804 ÿ0.089800 0.3277050 0.998972 0.998963

0.40 0.18620 ÿ0.088650 0.3278240 0.998971 0.998857

0.35 0.20714 ÿ0.087330 0.3279600 0.998973 0.998916

0.30 0.23220 ÿ0.085730 0.3281200 0.998972 0.998971

0.25 0.26327 ÿ0.083710 0.3283180 0.998972 0.998976

0.20 0.30400 ÿ0.080998 0.3285750 0.998973 0.998890

0.167 0.33950 ÿ0.078598 0.3287940 0.998973 0.998967

0.15 0.36183 ÿ0.077058 0.3289300 0.998972 0.998972

0.10 0.45600 ÿ0.070300 0.3294910 0.998970 0.998942

0.05 0.66255 ÿ0.053540 0.3306320 0.998972 0.998919

Fig. 2. Numerical results of the velocity distribution.
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4. Numerical results

The problem (8) was solved numerically for oppo-
site-current gas (1) and liquid (2) ¯ows for the follow-
ing parameters' values y1 � 0:1 and y2 � 0:152: In

accordance with the requirement for minimum of
F�a, b� in Eq. (7), the boundary conditions a, b and
F�a, b� were determined. The results obtained for f 01�6�
and f 02�6� are shown in Table 1. Taking into account
that boundary layer theory gives f 0�6� � 0:99897 [5],
the obtained results are characterized with su�cient
precision at determination of a, b.

The velocity distribution in the gaseous and liquid
phases are presented in Fig. 2. The boundary
conditions in Eq. (5) show that the velocity at the

interphase boundary becomes zero when X1 � X 0
1:

f 0i �0� � 0, i � 1, 2, �9�

therefore:

�y2 � y2

����������������
1ÿ X 0

1

X 0
1

s
� 1, �10�

because in order to ful®l the conditions f 0i �1� � 1, it is
necessary that

f 001 �0� � f 002 �0� � 0:33205: �11�

It follows directly from Eq. (10) that at y2 � 0:152 for
the point where the phase velocity changes its direc-
tion, X 0

1 is:

X 0
1 � 0:02252: �12�

The results from the asymptotic theory [1] present the
velocity change at the boundary layer U2�X2, Y2� and
at the phase boundary U2�X2, 0�:

U2�X2, Y2 � � 1ÿy2 0:33205���
p
p

�X2

0

exp
�ÿY 2

2=4�X2ÿx�
��������������������������������X2ÿx��1ÿx�

p dx,

U2�X2, 0� � 1ÿ y2
0:33205���

p
p ln

1� ������
X2

p

1ÿ ������
X2

p : �13�

Table 2

Comparison between asymptotic and numerical theory (vel-

ocity distribution)

y1 � 0:1, y2 � 0:152

Z2 Y2 U2�X2, Y2� f 02

X2 � 0:167
0.00 0.0 0.907672 0.959000

1.22 0.5 0.945604 0.983229

2.45 1.0 0.983392 0.995563

3.67 1.5 0.997511 0.998583

4.89 2.0 0.999821 0.998962

X2 � 0:5
0.00 0.0 0.910754 0.908000

0.71 0.5 0.941204 0.942042

1.41 1.0 0.966199 0.968796

2.12 1.5 0.983722 0.985933

2.83 2.0 0.993640 0.994414

3.54 2.5 0.998019 0.997703

4.24 3.0 0.999513 0.998693

X2 � 0:833
0.00 0.0 0.883033 0.785989

0.55 0.5 0.927292 0.846172

1.10 1.0 0.955745 0.899398

1.64 1.5 0.974572 0.940078

2.19 2.0 0.986680 0.968257

2.74 2.5 0.993754 0.984835

3.29 3.0 0.997420 0.993261

3.83 3.5 0.999070 0.996915

Fig. 3. Theoretical (asymptotic solution) and experimental vel-

ocity pro®les in counter-current ¯ow.
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They are compared [1] with the experimental data in

Figs. 3 and 4 �Z � Z1, UG � f 01, XL � X2, YL � Y2,

UL � U2, US � U2�X2, 0�, U 1L � U 12 , U E
S � exper-

imental data) and with the directly calculated results in

Tables 2 and 3, where f 02�Z2� is a numerical solution of
the problem (5). The comparison shows a good agree-

ment between the asymptotic theory (13) and numerical

solution, taking into account that accuracy of the asymp-

totic theory is about 10±15%. From Tables 2 and 3 and

Figs. 3 and 4, a good agreement between the results of

physical experiments and numerical simulation is seen.

The obtained results show that there is a line, where

the velocity changes its direction in gaseous phase
(Fig. 5).

5. Energy dissipation

The energy dissipated in the laminar boundary layer

[6,7] is described for both phases by the equation:

ei � mi

�l
0

��ÿ1�i�1
0

�
@ui
@y

�2

dx dy, i � 1, 2: �14�

Using dimensionless variables (2), the problem (14)

takes the following form:
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dYi dXi, i � 1, 2, �15�
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, i � 1, 2: �16�

The introduction of similarity variables leads to:

Ei �
�1
0

1�����
Xi

p
� �1

0

� f 00i 2� dZi
�

dXi, i � 1, 2: �17�

Table 3

Comparison between asymptotic and numerical theory (inter-

phase velocity)

y1 � 0:1, y2 � 0:152

X2 U2�X2, Y2� f 02

0.1 0.98135 0.96930

0.2 0.97259 0.95410

0.3 0.96496 0.94000

0.4 0.95754 0.92510

0.5 0.94980 0.90800

0.6 0.94124 0.88650

0.7 0.93109 0.85730

0.8 0.91778 0.80998

0.9 0.89643 0.70300

Fig. 4. Theoretical (asymptotic solution) and experimental relationships of surface velocities of the length X at various y2 in coun-

ter-current ¯ow.
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In case of co-current ¯ows, f 00 �i does not depend on Xi

and for dissipation energy the following is obtained:

E �i � 2

�1
0

� f 00 �i �2 dZi, i � 1, 2, �18�

where f �i �i � 1, 2� is the solution of Eq. (8) at bound-

ary conditions for co-current ¯ows:

y�1 � ÿ0:1, y �2 � y2 � 0:152, f 0 �1�0� � 0:0908,

f 00 �1�0� � 0:32765:
�19�

In Table 4, the dimensionless energy dissipation

Ei �i � 1, 2� in the boundary layer is shown for the
case of gas±liquid opposite-current ¯ows. It is com-
pared with values obtained for co-current ¯ows

E �i �i � 1, 2�:
These results show that the energy dissipation

E �i �i � 1, 2� for gaseous phase in case of co-current

¯ows is lower than that in case of opposite-current
¯ows Ei �i � 1, 2�, while in the second (liquid) phase
there is no signi®cant change.

6. Conclusion

The obtained results allow determination of the vel-
ocity distribution in opposite-current ¯ows in gas±

liquid boundary layers. They open the sociability for a
theoretical analysis of the heat and mass transfer kin-
etics under these conditions. The comparison between

opposite-current and co-current ¯ows shows signi®cant
di�erences in dissipation energy values in the gaseous
phase.
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Fig. 5. Zero velocity line.

Table 4

Comparison between the energy dissipation for co-current

and counter-current two-phase ¯ows

Gas Liquid

y1 � ÿ0:1, �y2 � y2 � 0:152 E �1 � 0:458334 E �2 � 0:0064370
y1 � 0:1, y2 � 0:152 E1 � 0:52505 E2 � 0:0132823
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